112 research outputs found

    In vivo myocardial tissue characterization of all four chambers using high-resolution quantitative MRI

    Get PDF
    Quantitative native T(1) Mapping of the myocardium without the application of contrast agents can be used to detect fibrosis in the left ventricle. Spatial resolution of standard native T(1) mapping is limited by cardiac motion and hence is not sufficient to resolve small myocardial structures, such as the right ventricle and the atria. Here, we present a novel MR approach which provides cardiac motion information and native T(1) maps from the same data. Motion information is utilized to optimize data selection for T(1) mapping and a model-based iterative reconstruction scheme ensures high-resolution T(1) maps for the entire heart. Feasibility of the approach was demonstrated in three healthy volunteers. In the T(1) maps, the myocardium of all four chambers can be visualized and T(1) values of the left atrium and right chambers were comparable to left ventricular T(1) values

    Autoadaptive motion modelling for MR-based respiratory motion estimation

    Get PDF
    © 2016 The Authors.Respiratory motion poses significant challenges in image-guided interventions. In emerging treatments such as MR-guided HIFU or MR-guided radiotherapy, it may cause significant misalignments between interventional road maps obtained pre-procedure and the anatomy during the treatment, and may affect intra-procedural imaging such as MR-thermometry. Patient specific respiratory motion models provide a solution to this problem. They establish a correspondence between the patient motion and simpler surrogate data which can be acquired easily during the treatment. Patient motion can then be estimated during the treatment by acquiring only the simpler surrogate data.In the majority of classical motion modelling approaches once the correspondence between the surrogate data and the patient motion is established it cannot be changed unless the model is recalibrated. However, breathing patterns are known to significantly change in the time frame of MR-guided interventions. Thus, the classical motion modelling approach may yield inaccurate motion estimations when the relation between the motion and the surrogate data changes over the duration of the treatment and frequent recalibration may not be feasible.We propose a novel methodology for motion modelling which has the ability to automatically adapt to new breathing patterns. This is achieved by choosing the surrogate data in such a way that it can be used to estimate the current motion in 3D as well as to update the motion model. In particular, in this work, we use 2D MR slices from different slice positions to build as well as to apply the motion model. We implemented such an autoadaptive motion model by extending our previous work on manifold alignment.We demonstrate a proof-of-principle of the proposed technique on cardiac gated data of the thorax and evaluate its adaptive behaviour on realistic synthetic data containing two breathing types generated from 6 volunteers, and real data from 4 volunteers. On synthetic data the autoadaptive motion model yielded 21.45% more accurate motion estimations compared to a non-adaptive motion model 10 min after a change in breathing pattern. On real data we demonstrated the methods ability to maintain motion estimation accuracy despite a drift in the respiratory baseline. Due to the cardiac gating of the imaging data, the method is currently limited to one update per heart beat and the calibration requires approximately 12 min of scanning. Furthermore, the method has a prediction latency of 800 ms. These limitations may be overcome in future work by altering the acquisition protocol

    Neural networks-based regularization for large-scale medical image reconstruction

    Get PDF
    In this paper we present a generalized Deep Learning-based approach for solving ill-posed large-scale inverse problems occuring in medical image reconstruction. Recently, Deep Learning methods using iterative neural networks (NNs) and cascaded NNs have been reported to achieve state-of-the-art results with respect to various quantitative quality measures as PSNR, NRMSE and SSIM across different imaging modalities. However, the fact that these approaches employ the application of the forward and adjoint operators repeatedly in the network architecture requires the network to process the whole images or volumes at once, which for some applications is computationally infeasible. In this work, we follow a different reconstruction strategy by strictly separating the application of the NN, the regularization of the solution and the consistency with the measured data. The regularization is given in the form of an image prior obtained by the output of a previously trained NN which is used in a Tikhonov regularization framework. By doing so, more complex and sophisticated network architectures can be used for the removal of the artefacts or noise than it is usually the case in iterative NNs. Due to the large scale of the considered problems and the resulting computational complexity of the employed networks, the priors are obtained by processing the images or volumes as patches or slices. We evaluated the method for the cases of 3D cone-beam low dose CT and undersampled 2D radial cine MRI and compared it to a total variation-minimization-based reconstruction algorithm as well as to a method with regularization based on learned overcomplete dictionaries. The proposed method outperformed all the reported methods with respect to all chosen quantitative measures and further accelerates the regularization step in the reconstruction by several orders of magnitude

    Fast myocardial T(1) mapping using cardiac motion correction

    Get PDF
    PURPOSE: To improve the efficiency of native and postcontrast high-resolution cardiac T(1) mapping by utilizing cardiac motion correction. METHODS: Common cardiac T(1) mapping techniques only acquire data in a small part of the cardiac cycle, leading to inefficient data sampling. Here, we present an approach in which 80% of each cardiac cycle is used for T(1) mapping by integration of cardiac motion correction. Golden angle radial data was acquired continuously for 8 s with in-plane resolution of 1.3 × 1.3 mm(2). Cine images were reconstructed for nonrigid cardiac motion estimation. Images at different TIs were reconstructed from the same data, and motion correction was performed prior to T(1) mapping. Native T(1) mapping was evaluated in healthy subjects. Furthermore, the technique was applied for postcontrast T(1) mapping in 5 patients with suspected fibrosis. RESULTS: Cine images with high contrast were obtained, leading to robust cardiac motion estimation. Motion-corrected T(1) maps showed myocardial T(1) times similar to cardiac-triggered T(1) maps obtained from the same data (1288 ± 49 ms and 1259 ± 55 ms, respectively) but with a 34% improved precision (spatial variation: 57.0 ± 12.5 ms and 94.8 ± 15.4 ms, respectively, P < 0.0001) due to the increased amount of data. In postcontrast T(1) maps, focal fibrosis could be confirmed with late contrast-enhancement images. CONCLUSION: The proposed approach provides high-resolution T(1) maps within 8 s. Data acquisition efficiency for T(1) mapping was improved by a factor of 5 by integration of cardiac motion correction, resulting in precise T(1) maps

    Unrolled three-operator splitting for parameter-map learning in Low Dose X-ray CT reconstruction

    Get PDF
    We propose a method for fast and automatic estimation of spatially dependent regularization maps for total variation-based (TV) tomography reconstruction. The estimation is based on two distinct sub-networks, with the first sub-network estimating the regularization parameter-map from the input data while the second one unrolling T iterations of the Primal-Dual Three-Operator Splitting (PD3O) algorithm. The latter approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is then trained end-to-end in a supervised learning fashion using pairs of clean-corrupted data but crucially without the need of having access to labels for the optimal regularization parameter-maps

    Learning Regularization Parameter-Maps for Variational Image Reconstruction Using Deep Neural Networks and Algorithm Unrolling

    Get PDF
    We introduce a method for the fast estimation of data-adapted, spatially and temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV) minimization. The proposed approach is inspired by recent developments in algorithm unrolling using deep neural networks (NNs) and relies on two distinct subnetworks. The first subnetwork estimates the regularization parameter-map from the input data. The second subnetwork unrolls iterations of an iterative algorithm which approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is then trained end-to-end in a supervised learning fashion using pairs of clean and corrupted data but crucially without the need for access to labels for the optimal regularization parameter-maps. We first prove consistency of the unrolled scheme by showing that the unrolled minimizing energy functional used for the supervised learning -converges, as tends to infinity, to the corresponding functional that incorporates the exact solution map of the TV-minimization problem. Then, we apply and evaluate the proposed method on a variety of large-scale and dynamic imaging problems with retrospectively simulated measurement data for which the automatic computation of such regularization parameters has been so far challenging using the state-of-the-art methods: a 2D dynamic cardiac magnetic resonance imaging (MRI) reconstruction problem, a quantitative brain MRI reconstruction problem, a low-dose computed tomography problem, and a dynamic image denoising problem. The proposed method consistently improves the TV reconstructions using scalar regularization parameters, and the obtained regularization parameter-maps adapt well to imaging problems and data by leading to the preservation of detailed features. Although the choice of the regularization parameter-maps is data-driven and based on NNs, the subsequent reconstruction algorithm is interpretable since it inherits the properties (e.g., convergence guarantees) of the iterative reconstruction method from which the network is implicitly defined

    Multilevel comparison of deep learning models for function quantification in cardiovascular magnetic resonance: on the redundancy of architectural variations

    Get PDF
    BACKGROUND: Cardiac function quantification in cardiovascular magnetic resonance requires precise contouring of the heart chambers. This time-consuming task is increasingly being addressed by a plethora of ever more complex deep learning methods. However, only a small fraction of these have made their way from academia into clinical practice. In the quality assessment and control of medical artificial intelligence, the opaque reasoning and associated distinctive errors of neural networks meet an extraordinarily low tolerance for failure. AIM: The aim of this study is a multilevel analysis and comparison of the performance of three popular convolutional neural network (CNN) models for cardiac function quantification. METHODS: U-Net, FCN, and MultiResUNet were trained for the segmentation of the left and right ventricles on short-axis cine images of 119 patients from clinical routine. The training pipeline and hyperparameters were kept constant to isolate the influence of network architecture. CNN performance was evaluated against expert segmentations for 29 test cases on contour level and in terms of quantitative clinical parameters. Multilevel analysis included breakdown of results by slice position, as well as visualization of segmentation deviations and linkage of volume differences to segmentation metrics via correlation plots for qualitative analysis. RESULTS: All models showed strong correlation to the expert with respect to quantitative clinical parameters (rz′ = 0.978, 0.977, 0.978 for U-Net, FCN, MultiResUNet respectively). The MultiResUNet significantly underestimated ventricular volumes and left ventricular myocardial mass. Segmentation difficulties and failures clustered in basal and apical slices for all CNNs, with the largest volume differences in the basal slices (mean absolute error per slice: 4.2 ± 4.5 ml for basal, 0.9 ± 1.3 ml for midventricular, 0.9 ± 0.9 ml for apical slices). Results for the right ventricle had higher variance and more outliers compared to the left ventricle. Intraclass correlation for clinical parameters was excellent (≥0.91) among the CNNs. CONCLUSION: Modifications to CNN architecture were not critical to the quality of error for our dataset. Despite good overall agreement with the expert, errors accumulated in basal and apical slices for all models

    Motion-corrected model-based reconstruction for 2D myocardial T1 mapping

    Get PDF
    PURPOSE: To allow for T1 mapping of the myocardium within 2.3 s for a 2D slice utilizing cardiac motion-corrected, model-based image reconstruction. METHODS: Golden radial data acquisition is continuously carried out for 2.3 s after an inversion pulse. In a first step, dynamic images are reconstructed which show both contrast changes due to T1 recovery and anatomical changes due to the heartbeat. An image registration algorithm with a signal model for T1 recovery is applied to estimate non-rigid cardiac motion. In a second step, estimated motion fields are applied during an iterative model-based T1 reconstruction. The approach was evaluated in numerical simulations, phantom experiments and in in-vivo scans in healthy volunteers. RESULTS: The accuracy of cardiac motion estimation was shown in numerical simulations with an average motion field error of 0.7 ± 0.6 mm for a motion amplitude of 5.1 mm. The accuracy of T1 estimation was demonstrated in phantom experiments, with no significant difference (p = 0.13) in T1 estimated by the proposed approach compared to an inversion-recovery reference method. In vivo, the proposed approach yielded 1.3 × 1.3 mm T1 maps with no significant difference (p = 0.77) in T1 and SDs in comparison to a cardiac-gated approach requiring 16 s scan time (i.e., seven times longer than the proposed approach). Cardiac motion correction improved the precision of T1 maps, shown by a 40% reduced SD. CONCLUSION: We have presented an approach that provides T1 maps of the myocardium in 2.3 s by utilizing both cardiac motion correction and model-based T1 reconstruction

    Motion estimation and correction for simultaneous PET/MR using SIRF and CIL

    Get PDF
    SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'
    • …
    corecore